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Short-range correlated uniform noise in the dispersion coefficient,
inherent in many types of optical fibers, broadens and eventually
destroys all initially ultra-short pulses. However, under the con-
straint that the integral of the random component of the disper-
sion coefficient is set to zero (pinned), periodically or quasi-
periodically along the fiber, the dynamics of the pulse propagation
changes dramatically. For the case that randomness is present in
addition to constant positive dispersion, the pinning restriction
significantly reduces average pulse broadening. If the randomness
is present in addition to piece-wise constant periodic dispersion
with positive residual value, the pinning may even provide prob-
ability distributions of pulse parameters that are numerically
indistinguishable from the statistically steady case. The pinning
method can be used to both manufacture better fibers and up-
grade existing fiber links.

The effect of random perturbations in optical fibers increas-
ingly attracts attention as the demand for the quality of

transmission grows daily (1, 2). The impact of randomness on
signal transmission in a single-mode fiber is negative; it causes
degradation of the signal and lowers transmission capabilities. In
particular, amplifier noise (3–6) and random fiber birefringence
(7–11) lead to random shifts in the pulse position (timing jitter)
and to pulse broadening, respectively. Both effects eventually
cause a destruction of bit patterns and lead to an increase of the
bit-error-rate (BER), the most important parameter describing
performance in fiber communications systems (12).

In the present paper, we consider the effect of random
dispersion, which is, for ultrashort pulses, one of the major causes
of bit-pattern destruction. However, we propose a way to sig-
nificantly reduce the pulse deterioration and eventually reduce
the BER caused by the noise in dispersion by using passive
(independent of pulse properties) periodic control of the accu-
mulated dispersion of the fiber link. The method may even
provide statistically steady propagation of the pulse along the
fiber and gives insight into general understanding of control
mechanisms for nonlinear systems with randomness.

Chromatic dispersion is an important characteristic of a
medium and can significantly degrade the integrity of wave
packets. In practice, chromatic dispersion is not uniformly
distributed and often exhibits random variations in space and
time. On the other hand, wave propagation through the medium
is usually much faster than temporal variations of the chromatic
dispersion. Therefore, these random variations can be treated as
‘‘spatial’’ multiplicative noise that does not change in time. This
multiplicative noise is conservative, and the wave energy remains
constant during propagation through the medium. Recently,
high-precision measurements of fiber chromatic dispersion as a
function of a fiber length experimentally demonstrated the
significance of the dispersion randomness (13, 14).

The overall chromatic dispersion in an optical fiber comes
from two sources. The first source is the medium itself. The
second source is the specific geometry of the waveguide profile.
Material dispersion in the optical fiber is a relatively stable
parameter, uniformly distributed along the fiber. However,
waveguide dispersion is not nearly as stable. Existing technology
does not yet provide accurate control of the waveguide geometry

of modern fibers, where dependence of dispersion on wavelength
is complex. As a result, the magnitudes of random variations of
fiber chromatic dispersion are typically the same as, or in some
cases even greater than, that of the mean dispersion (13, 14).

In the short-wavelength regime, a universal description of the
signal envelope in the reference frame moving with the packet-
group velocity is given by the nonlinear Schrödinger equation for
the complex scalar field, �(z;t), see for example ref. 12,

�i�z� � d�z��t
2� � 2�2�� . [1]

The equation is written in the dimensionless form.‡ Variations in
the medium enter Eq. 1 through the dispersion coefficient d(z) �
ddet(z) � �(z), which is decomposed into its deterministic part,
ddet(z), and a random part, �(z). Here z is the position along the
fiber and t is the retarded time. The initial profile �(0;t) is
localized in t. We consider two different models of deterministic
dispersion, both of which are standard in fiber optic communi-
cations. Model A is the case of constant dispersion, ddet � d0. In
the absence of noise [�(z) � 0], �0(z;t) � a exp [izd0�b2]sech[t�b],
where a2b2 � d0 (a is the peak amplitude, b is the pulse width,
b is inversely proportional to bit-rate) is an exact soliton solution
of [1]. The existence of the soliton (15) is the result of a dynamic
equilibrium between dispersion and nonlinearity: the two spatial
scales—nonlinearity, zNL � 1�a2 and dispersion, zd � b2�d0—
coincide. Model B is the case of dispersion management (DM),
ddet � d0 � dDM (16). Here, dispersion is piecewise constant:
positive and negative spans alternate with period zDM, and 0 �
d0 � dDM. There is no exact solution for the pure (no noise)
Model B, but theoretical evidence, confirmed by extensive
numerical studies and experimental results, indicates the exis-
tence of a breathing solution (DM soliton) with a nearly Gauss-
ian shape (17–20). The localized solution here is, again, due to
the interplay of dispersion and nonlinearity. In the presence of
a periodic dispersion map, however, the (DM) soliton acquires
an important characteristic, quadratic phase (chirp). In contrast
to conventional soliton solutions, DM solitons can exist for zero
(or even negative) values of average dispersion.

Approximate scale characteristics of the dispersion noise
present in real fibers can be extracted from experimental results
(13, 14). These results show that the smallest scale of noticeable
change in the dispersion value is approximately �1–2 km. For
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‡All parameters are presented here in dimensionless units that transform to real-world
fiber units, according to the following rules. The envelope of the electric field is in the form
� � E��P0, where P0 is the peak pulse power. The propagation variable is z � x(�P0�2),
where x is distance along the fiber and � is the Kerr nonlinearity coefficient. The Kerr
coefficient can be expressed in terms of other fiber parameters, � � 2�n2�(�Seff), where
n2 is the nonlinear component of fiber refractive index, � is the operating wavelength, and
Seff is an effective core area of the fiber. The spatial coordinate is t � 	�	0, where 	 is in the
reference frame of the group velocity, and 	0 is the characteristic pulse width. The
dispersion coefficient is d � 2
2�(�P0	0

2), where 
2 is the second-order dispersion param-
eter. The typical parameters for dispersion-shifted fiber are: � � 1,550 nm, 	0 � 7.01 ps,
x � 50 km, P0 � 4 mW, 
2 � 2 ps2�km, � � 10 Wt�1km�1.
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constant dispersion fibers (model A), the amplifier spacing is
�50 � 60 km, and for dispersion managed fibers (model B), the
period of a typical dispersion map is also �50 � 60 km. These
scales are much longer than that of the dispersion variation,
justifying the idealized consideration of ensemble averaging over
short-correlated Gaussian noise for both models, according to
the Central Limit Theorem. Previously, the stability of initial
pulses in the presence of the short-range-correlated Gaussian
uniform noise �u with zero mean, 	�u(z1)�u(z2)
 � D�(z1 � z2),
was studied for both models A and B. The pulse-broadening
effects of �u on both models A and B were studied numerically
and by means of a variational approach (21–23).

We briefly discuss the dynamics in the limit of strong noise. On
short scales, the nonlinearity is weak, and propagation is essen-
tially linear: only the phase of the pulse changes because of
rapidly varying dispersion, whereas its frequency spectrum varies
slowly. In this weakly nonlinear case the transformation

��z; t� � �
� �

�

d
 exp��i�
t � 
2��
0

z

�d�z�� � ddet�dz����
from � to �
 filters out fast oscillations. The evolution of �
(z)
is given by

��i�z � id0
2��
 � 2� d
1,2,3��
1 � 
2 � 
3 � 
� [2]

� exp��i
�
0

z

dz��ddet � d0��e � i
�
0

z
dz���z���1�2�� 3,

where 
 � 
1
2 � 
2

2 � 
3
2 � 
2. This equation describes the pulse

propagation on longer scales. The term

e � i
�
0

z
dz��u�z��

is a strongly fluctuating quantity whose ensemble average decays
exponentially in z for typical configurations of the noise �u. For
� � �u, the ensemble average of the kernel is exp [�
2Dz*�2],
and z* is equal to z, so that the kernel is decorrelated at z� �
[
2D]�1 � [
4D]�1 � b4�D � 1�(BR)4*D, where BR is the
bit-rate of the transmission system. The exponential decay of the
kernel with z disrupts the balance between nonlinearity and
dispersion necessary for steady-pulse propagation; i.e., the nat-
ural noise in dispersion leads to the destruction of an initially
localized signal.

The natural question is that of the existence of an artificial
constraint capable of reducing and maybe altogether preventing
this pulse broadening. We demonstrate that such a constraint
does indeed exist and can be implemented readily in real fibers.
All that is required is that the accumulated dispersion, �0

zdy�(y)
is set to zero, or pinned, either periodically or quasi-periodically
with a period of the order of z� or less. The resulting Gaussian
nonuniform noise, �n with zero mean is described by

	�n�y��n�z�
 � D���z � y� �
1

lj � 1 � lj
�

if lj � y,z � lj�1; i.e., y and z belong to the same segment bounded
by an adjacent pair of pinning points, lj. Otherwise, there are no
correlations. The pinning method improves pulse integrity in-
dependently of the particular shape of the pulse, and it works for
both small and large levels of dispersion fluctuations. The
improvement in propagation is achieved in a statistical sense: the
change (in z) of ensemble-averaged correlation functions of

various parameters characterizing a pulse is much slower if the
pinning method is applied. The fundamental principal at the
core of the method is to pin the difference between the accu-
mulated value of actual dispersion and accumulated value of
nominal dispersion to zero. In this sense, the pinning method is
a generalization of the pure dispersion management technique
(16–19), which consists of periodic compensation of the accu-
mulated deterministic fiber dispersion by insertion of a com-
pensating fiber with constant deterministic dispersion of an
opposite sign. In relation to previous works on overcoming pulse
deterioration caused by variation of dispersion in a fiber link, we
stress that our technique is quite general. Our results are
consistent both with experimental observations (14) for a long-
haul propagation through a looped system with a complicated
dispersion profile§ and a guidanken numerical algorithm (24) for
optimal ordering in the cabling process of the fiber spans of the
same length but slightly varying constant dispersion.¶

In this article, we demonstrate the validity of the pinning
method, first theoretically, addressing the weakly nonlinear case,
and then by numerical extension of the analysis to the case of the
moderate nonlinearity. Consider the effect of nonuniform noise,
� � �n, in the weakly nonlinear case. Pinning changes the
correlation function for the noise, so that z* � z(lj�1 � z)�(lj�1
� lj) with z from [lj;lj�1], where lj,lj�1 are pinning points. The
ensemble average of the kernel is now a periodic (or quasi-
periodic) function of z, and the kernel is a self-averaged quantity
on z-domains longer than the pinning scale and shorter than the
scale of nonlinearity. Thus, for z large, the kernel’s f luctuations
are greatly suppressed, and [2] can be averaged over the fast
f luctuations by simple replacement of � and the fluctuating
kernel by their ensemble averages. In the case of Model A,
additional averaging over a single pinning leg reduces the
z-dependent kernel of to

exp� � 
2Dl�4�	���
2Dl�Erfi�	
2Dl�4�.

In the case of Model B, one should average with respect to both
the pinning period and the period of the periodic-dispersion
map. The overall result of the averaging procedure is the
emergence of a nonlinear term that does not vanish as z 3 �.
One also concludes that z� sets the critical pinning period: in the
case of a strong noise, the pinning is efficient only if l � li�1 �
li � z�. It is possible to show that the averaged equation, valid only
if pinning is applied, has a steady solution. The averaged
equation approach is a priori applicable for a large but finite z,
so the emergence of a steady localized solution for the averaged
equation does not mean that the original problem possesses a
steady-state. In the direct numerical simulation of Eq. 1, to which
we now switch our attention, the effect is seen as essentially
limiting the pulse broadening.

We perform numerical investigations of both models A and B
with � � �u and � � �n in intermediate the case, zNL � z�. The
initial (z � 0) pulse is the exact soliton for model A, and it is a
Gaussian pulse close to the respective DM soliton for model B.
Fourier split-step scheme with 213 temporal Fourier modes and

§To create a simulation of a long-haul experiment, a number of fiber spans were put
together in (14). Each of the spans was constituted by the combination of different fibers
to design a specific dispersion profile. The whole system was looped to simulate trans-
mission over sizeable distances. The measurement of the values of the accumulated
dispersion of each span, which were presumed to be the same initially, shows the presence
of irregularity. It was shown that the insertion of an extra span compensating for this
irregularity improves the transmission.

¶Propagation of a pulse through a fiber with piece-wise constant dispersion was considered
in (24). Dispersion of a single span, each of the same length, was taken to be a random
Gaussian number with nonzero mean. It is shown that the propagation improves if the
same sequence of spans is ordered in an alternating, descending order: the span with the
largest positive value should be followed by the one with the largest negative value; the
next pair is chosen according to the same principle from the bank of remaining spans, etc.
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periodic conditions imposed on the boundaries of the domain t
� [�180,180] is implemented. The spatial step is zstep � 0.01, and
the numerical convergence was checked by varying the size of the
periodic box and the number of the Fourier harmonics. Param-
eters for the initial signal were chosen to be d0 � 1, a � 1 in
model A, and d0 � 0.15, dDM � 0.1, zDM � 1, � �(0;t) � � 0.79
exp(�t2�2.6) in model B. The setup in model B is borrowed from
(20) and corresponds to experimentally available DM fibers.
Gaussian zero-mean noise correlated at zn � 0.1 with amplitude
dn � 1 models the �-correlated uniform noise with D � dn

2zn �
0.1. The nonuniform noise is constructed from the uniform noise
by the following subtraction at every pinning leg:

�n�z� � �u�z� �
1

lj � 1 � lj
�

lj

lj � 1

dy��y�.

Pinning strategies of two types are considered: strictly peri-
odic, lj�1 � lj � l, where l is fixed; and quasi-periodic, lj�1 �
lj � l(1 � �), where � is a random number uniformly
distributed between � 1�2. The averaged (or otherwise strict)
pinning period for the nonuniform case is taken to be 1, 5, or
10. The simulation runs until the pulse arrives at z � 95.
Statistics were collected for 102 � 103, and, in a special case
104, realizations.

The averaged pulse-width (full width at half-maximum am-
plitude) as a function of z is shown in Fig. 1.
 The capital letter
subscript of the figures corresponds to the type of model, A or
B. Solid black represents uniform noise, and red, green, and blue
represent nonuniform noise with pinning period l equal to 1, 5,
and 10, respectively. The quasi-periodic curves are dashed and
of the same color as the respective periodic ones.

For Model A, all types of nonuniform noise demonstrate a
significant reduction in the rate of pulse broadening when
compared with the uniform case. The individual configurations
that degrade (through pulse splitting, etc.) in the uniform case
maintain pulse integrity when each type of nonuniform com-
pensation is applied. The dependence on the pinning period is
monotonic: the peak amplitude of the pulse decays faster as the
pinning period increases. The difference between periodic and
respective quasi-periodic cases is minor, with a slightly better
confinement observed for the quasi-periodic case. The destruc-
tion of the pulse also is accompanied by emission of continuous
radiation by the soliton. The radiation is seen clearly in the movie
made for individual runs. Once the radiation reaches the bound-
aries of the box, it reflects and starts to interfere with the
still-localized solution (at z � 20).

The effect of nonuniform noise is more dramatic in the case
of Model B. For nonuniform compensation with the averaged
period l � 1 (and also less), one observes a tendency toward
statistically steady behavior: the average pulse width does not
decay (in contrast to a decay in the uniform case), and the
probability distribution function of the pulse width (and of other
variables characterizing the pulse propagation, such as ampli-
tude) does not change shape with z. (Notice that for the case with
the same pinning period l � 1 but greater D � 2.5, a minor but
still observable degradation of pulse occurred. This change is
consistent with the statement made in the text concerning the
efficiency of the pinning: the greater is D, the lower is the critical
pinning period.) There is no visible emission of radiation by the
localized solution for any case of Model B. We also have checked
that temporal and spatial averages (for example, for the PDF of
the pulse width) coincide. The dependence on the type of

compensation (for l � 1) is monotonic, and the difference
between the random and quasi-random cases is minor, as in the
case of Model A. Notice that the tremendous reduction in the
pulse decay is achieved by very minor changes in dispersion.

Our analysis gives practical recommendations for improving
fiber system performance that is limited by randomness in
chromatic dispersion. The limitation originates from accumula-
tion of the integral dispersion. The distance between naturally
occurring nearest zeros of the accumulated dispersion grows
with the fiber length (� z). This growth causes asymptotic decay
of the nonlinearity with z and, therefore, pulse degradation. We
have shown that the signal can be stabilized by periodic or
quasi-periodic pinning of the accumulated random dispersion.**
This result can be achieved by first measuring the mismatch
between the nominal dispersion of the fiber line and the actual


Movies of single-realization dynamics in z, a comparative plot of the dispersion profile with
and without compensation, and more figures characterizing statistics of the pulse prop-
agation in the various cases considered are available at http:��cnls.lanl.gov��chertkov�
Fiber.

**Real fiber spans, usually each of length 0.5�2 zNL, are not homogeneous, as they are
often produced at different times by different companies.

Fig. 1. Averaged pulse-width as a function of z measured at the half-of-
the-peak-amplitude position. Fig. 1 A and B correspond to the models A and
B, respectively.
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accumulated dispersion, and second, inserting a small fiber to
compensate for this mismatch.
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